Multi-unit Auctions

Sushil Bikhchandani

Workshop on Mechanism Design

I.S.I. Delhi

August 4, 2015

The setting

The setting

- There are k identical units for sale
- There are n bidders
- A bidder may demand more than one unit

The setting

- There are k identical units for sale
- There are n bidders
- A bidder may demand more than one unit
- For each bidder, total demand by other bidders (at price 0) exceeds k

Types of auctions

- Discriminatory (or "pay your bid") auction
- Uniform-price auction
- Vickrey auction

Types of auctions

- Discriminatory (or "pay your bid") auction
- Uniform-price auction
- Vickrey auction

These are all sealed-bid auctions.

Auction Rules

Auction Rules

In each of these auctions, each bidder submits up to k sealed bids and the highest k bids win

Auction Rules

In each of these auctions, each bidder submits up to k sealed bids and the highest k bids win

Discriminatory Each winning bid pays bid amount
Uniform-price Each winning bid pays highest losing bid
Vickrey
Winning bidders pays highest losing bids of other bidders

Auction Rules - example
$k=3, n=3$ and bids submitted are: Bidder 1: (10, 8, 6)
Bidder 2: $(12,7,0)$
Bidder 3: $(4,0,0)$

Auction Rules - example
$k=3, n=3$ and bids submitted are: Bidder 1: (10, 8, 6)
Bidder 2: $(12,7,0)$
Bidder 3: $(4,0,0)$

Bidder 1 wins 2 units, bidder 2 wins 1 unit and they pay:

Auction Rules - example

$k=3, n=3$ and bids submitted are: Bidder 1: $(\mathbf{1 0}, \mathbf{8}, 6)$
Bidder 2: $(12,7,0)$
Bidder 3: $(4,0,0)$

Bidder 1 wins 2 units, bidder 2 wins 1 unit and they pay:

Auction
Bidder 1 Bidder 2 Bidder 3

Discriminatory
18
12
0

Auction Rules - example

$k=3, n=3$ and bids submitted are: Bidder 1: $(\mathbf{1 0}, \mathbf{8}, 6)$
Bidder 2: $(12,7,0)$
Bidder 3: $(4,0,0)$

Bidder 1 wins 2 units, bidder 2 wins 1 unit and they pay:
Auction
Bidder 1 Bidder 2 Bidder 3

Discriminatory
18
12
0
Uniform-price
14
7
0

Auction Rules - example

$k=3, n=3$ and bids submitted are: Bidder 1: $(\mathbf{1 0}, \mathbf{8}, 6)$
Bidder 2: $(12,7,0)$
Bidder 3: $(4,0,0)$

Bidder 1 wins 2 units, bidder 2 wins 1 unit and they pay:

Auction	Bidder 1	Bidder 2	Bidder 3
Discriminatory	18	12	0
Uniform-price	14	7	0
Vickrey	11	6	0

Multi-unit auctions, single-unit demand

There are $n \geq k+1$ bidders and each has demand for one unit only.

Multi-unit auctions, single-unit demand

There are $n \geq k+1$ bidders and each has demand for one unit only. Easy generalization of earlier results for single-object auction.

Multi-unit auctions, single-unit demand
Define $w(x, y)=E\left[V_{1} \mid X_{1}=x, Y_{k}=y\right]$,
where Y_{k} is the k th highest of $\left\{X_{2}, X_{3}, \ldots, X_{n}\right\}$.

Multi-unit auctions, single-unit demand
Define $w(x, y)=E\left[V_{1} \mid X_{1}=x, Y_{k}=y\right]$,
where Y_{k} is the k th highest of $\left\{X_{2}, X_{3}, \ldots, X_{n}\right\}$.
Equilibrium strategies
Uniform-price auction (\& Vickrey auction): $b_{u}(x)=w(x, y)$

Multi-unit auctions, single-unit demand

Define $w(x, y)=\mathrm{E}\left[V_{1} \mid X_{1}=x, Y_{k}=y\right]$,
where Y_{k} is the k th highest of $\left\{X_{2}, X_{3}, \ldots, X_{n}\right\}$.

Equilibrium strategies
Uniform-price auction (\& Vickrey auction): $b_{u}(x)=w(x, y)$
Discriminatory auction: $b_{d}(x)=\int_{0}^{x} w(y, y) d L(y \mid x)$,
where $L(y \mid x)=\exp \left(-\int_{y}^{x} \frac{g(t \mid t)}{G(t \mid t)} d t\right)$ and
$g(y \mid x)$ is the density and $G(y \mid x)$ is the cdf of $Y_{k}=y$ given $X_{1}=x$.

Multi-unit auctions, single-unit demand

Uniform-price auctions yield greater expected revenue than discriminatory auction

Multi-unit auctions, single-unit demand

Uniform-price auctions yield greater expected revenue than discriminatory auction

With single-crossing, these auctions are efficient

Multi-unit auctions, multi-unit demand

$k=2, n \geq 2$ buyers
At least one bidder demands more than one unit

Multi-unit auctions, multi-unit demand

$k=2, n \geq 2$ buyers
At least one bidder demands more than one unit
Assume that buyer values are privately known

Multi-unit auctions, multi-unit demand

$k=2, n \geq 2$ buyers
At least one bidder demands more than one unit
Assume that buyer values are privately known
Bidder i 's valuation is $\left(v_{i 1}, v_{i 2}\right)$
For simplicity, assume that $v_{i 1} \geq v_{i 2}$ for all i

Multi-unit auctions, multi-unit demand

$k=2, n \geq 2$ buyers
At least one bidder demands more than one unit
Assume that buyer values are privately known
Bidder i 's valuation is $\left(v_{i 1}, v_{i 2}\right)$
For simplicity, assume that $v_{i 1} \geq v_{i 2}$ for all i
Bids submitted: $\left(b_{i 1}, b_{i 2}\right)$
The auction selects either two bidders who get one unit each or one bidder who gets two units.

Vickrey auction

Bidders pay the highest losing of the others' bids.

Vickrey auction

Bidders pay the highest losing of the others' bids.
The Vickrey auction is efficient. It is a dominant strategy for bidders to bid truthfully - that is, bid their valuations.

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$.

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$. Bidder 1 bids $\left(b_{11}, b_{12}\right)$.

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$. Bidder 1 bids $\left(b_{11}, b_{12}\right)$.
If $b_{11} \geq B_{2}, b_{12} \leq B_{1}$ then 1 wins one unit.

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$. Bidder 1 bids $\left(b_{11}, b_{12}\right)$.
If $b_{11} \geq B_{2}, b_{12} \leq B_{1}$ then 1 wins one unit. Payoff $=v_{11}-B_{2}$.

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$. Bidder 1 bids $\left(b_{11}, b_{12}\right)$.
If $b_{11} \geq B_{2}, b_{12} \leq B_{1}$ then 1 wins one unit. Payoff $=v_{11}-B_{2}$.
If $b_{11} \geq B_{2}, b_{12} \geq B_{1}$ then 1 wins two units.

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$. Bidder 1 bids $\left(b_{11}, b_{12}\right)$.
If $b_{11} \geq B_{2}, b_{12} \leq B_{1}$ then 1 wins one unit. Payoff $=v_{11}-B_{2}$.
If $b_{11} \geq B_{2}, b_{12} \geq B_{1}$ then 1 wins two units. Payoff $=v_{11}+v_{12}-B_{1}-B_{2}$.

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$. Bidder 1 bids $\left(b_{11}, b_{12}\right)$.
If $b_{11} \geq B_{2}, b_{12} \leq B_{1}$ then 1 wins one unit. Payoff $=v_{11}-B_{2}$.
If $b_{11} \geq B_{2}, b_{12} \geq B_{1}$ then 1 wins two units. Payoff $=v_{11}+v_{12}-B_{1}-B_{2}$.
These payoffs are always non-negative if $\left(b_{11}, b_{12}\right)=\left(v_{11}, v_{12}\right)$.

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$. Bidder 1 bids $\left(b_{11}, b_{12}\right)$.
If $b_{11} \geq B_{2}, b_{12} \leq B_{1}$ then 1 wins one unit. Payoff $=v_{11}-B_{2}$.
If $b_{11} \geq B_{2}, b_{12} \geq B_{1}$ then 1 wins two units. Payoff $=v_{11}+v_{12}-B_{1}-B_{2}$.
These payoffs are always non-negative if $\left(b_{11}, b_{12}\right)=\left(v_{11}, v_{12}\right)$.
If he bids $\left(b_{11}, b_{12}\right) \neq\left(v_{11}, v_{12}\right)$ then either the outcome is the same as when he bid $\left(b_{11}, b_{12}\right)=\left(v_{11}, v_{12}\right)$

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$. Bidder 1 bids $\left(b_{11}, b_{12}\right)$.
If $b_{11} \geq B_{2}, b_{12} \leq B_{1}$ then 1 wins one unit. Payoff $=v_{11}-B_{2}$.
If $b_{11} \geq B_{2}, b_{12} \geq B_{1}$ then 1 wins two units. Payoff $=v_{11}+v_{12}-B_{1}-B_{2}$.
These payoffs are always non-negative if $\left(b_{11}, b_{12}\right)=\left(v_{11}, v_{12}\right)$.
If he bids $\left(b_{11}, b_{12}\right) \neq\left(v_{11}, v_{12}\right)$ then either the outcome is the same as when he bid $\left(b_{11}, b_{12}\right)=\left(v_{11}, v_{12}\right)$ or he forgoes a positive payoff

Vickrey auction

Claim: It is a dominant strategy to bid truthfully: $\left(b_{i 1}, b_{i 2}\right)=\left(v_{i 1}, v_{i 2}\right)$.
Proof: Let B_{1} be the highest and B_{2} the second-highest among bidders
$2,3, \ldots, n$ bids: $b_{21}, b_{22}, b_{31}, b_{32}, \ldots, b_{n 1}, b_{n 2}$. Bidder 1 bids $\left(b_{11}, b_{12}\right)$.
If $b_{11} \geq B_{2}, b_{12} \leq B_{1}$ then 1 wins one unit. Payoff $=v_{11}-B_{2}$.
If $b_{11} \geq B_{2}, b_{12} \geq B_{1}$ then 1 wins two units. Payoff $=v_{11}+v_{12}-B_{1}-B_{2}$.
These payoffs are always non-negative if $\left(b_{11}, b_{12}\right)=\left(v_{11}, v_{12}\right)$.
If he bids $\left(b_{11}, b_{12}\right) \neq\left(v_{11}, v_{12}\right)$ then either the outcome is the same as
when he bid $\left(b_{11}, b_{12}\right)=\left(v_{11}, v_{12}\right)$ or he forgoes a positive payoff or makes a negative payoff.

Efficiency in multi-unit auctions

Highest bids win. $k=2$ objects, $n \geq 2$ bidders, $v_{i 1} \geq v_{i 2}$.
Let bid strategies be $b_{i 1}\left(v_{i 1}, v_{i 2}\right), b_{i 2}\left(v_{i 1}, v_{i 2}\right)$.

Efficiency in multi-unit auctions

Highest bids win. $k=2$ objects, $n \geq 2$ bidders, $v_{i 1} \geq v_{i 2}$.
Let bid strategies be $b_{i 1}\left(v_{i 1}, v_{i 2}\right), b_{i 2}\left(v_{i 1}, v_{i 2}\right)$.

Efficiency requires that

$$
\text { if } v_{i 1} \lessgtr v_{j 2} \Longleftrightarrow b_{i 1}\left(v_{i 1}, v_{i 2}\right) \lessgtr b_{j 2}\left(v_{j 1}, v_{j 2}\right)
$$

Efficiency in multi-unit auctions

Highest bids win. $k=2$ objects, $n \geq 2$ bidders, $v_{i 1} \geq v_{i 2}$.
Let bid strategies be $b_{i 1}\left(v_{i 1}, v_{i 2}\right), b_{i 2}\left(v_{i 1}, v_{i 2}\right)$.

Efficiency requires that

$$
\text { if } v_{i 1} \lessgtr v_{j 2} \Longleftrightarrow b_{i 1}\left(v_{i 1}, v_{i 2}\right) \lessgtr b_{j 2}\left(v_{j 1}, v_{j 2}\right)
$$

Efficient allocation if and only if

$$
\begin{aligned}
& b_{i 1}\left(v_{i 1}, v_{i 2}\right)=b\left(v_{i 1}\right) \\
& b_{i 2}\left(v_{i 1}, v_{i 2}\right)=b\left(v_{i 2}\right)
\end{aligned}
$$

Efficiency in multi-unit auctions

Highest bids win. $k=2$ objects, $n \geq 2$ bidders, $v_{i 1} \geq v_{i 2}$.
Let bid strategies be $b_{i 1}\left(v_{i 1}, v_{i 2}\right), b_{i 2}\left(v_{i 1}, v_{i 2}\right)$.

Efficiency requires that

$$
\text { if } v_{i 1} \lessgtr v_{j 2} \Longleftrightarrow b_{i 1}\left(v_{i 1}, v_{i 2}\right) \lessgtr b_{j 2}\left(v_{j 1}, v_{j 2}\right)
$$

Efficient allocation if and only if

$$
\begin{aligned}
& b_{i 1}\left(v_{i 1}, v_{i 2}\right)=b\left(v_{i 1}\right) \\
& b_{i 2}\left(v_{i 1}, v_{i 2}\right)=b\left(v_{i 2}\right)
\end{aligned}
$$

Conclusion: The Vickrey auction is efficient.

Uniform-price and discriminatory auctions are inefficient

Uniform-price and discriminatory auctions are inefficient

In uniform-price auction, bid for 1st unit equals its valuation. Bid for 2 nd unit depends on valuation of 1st unit.

Uniform-price and discriminatory auctions are inefficient

In uniform-price auction, bid for 1st unit equals its valuation. Bid for 2 nd unit depends on valuation of 1st unit.

In discriminatory auction, bid for each unit depends on valuation of other unit.

Uniform-price and discriminatory auctions are inefficient

In uniform-price auction, bid for 1st unit equals its valuation. Bid for 2nd unit depends on valuation of 1st unit.

In discriminatory auction, bid for each unit depends on valuation of other unit.

Conclusion: Uniform-price and discriminatory auctions are inefficient.

Revenue equivalence

Revenue equivalence

An allocation rule of an auction is a function from bidder values to a probability distribution over the possible allocation of the units.

Revenue equivalence

An allocation rule of an auction is a function from bidder values to a probability distribution over the possible allocation of the units.

If two multi-unit auctions have the same allocation rule and the bidder with the lowest valuation has the same expected payoff in both auctions, then the expected revenue is the same in the two auctions.

Books

(1) Auction Theory by Vijay Krishna, Academic Press.
(2) Putting Auction Theory to Work by Paul Milgrom, Cambridge Univerity Press.
(3) Introduction to Auction Theory by Flavio Menezes and Paulo Monteiro, Oxford University Press.
(9) Auctions: Theory and Practice by Paul Klemperer, Princeton University Press.

